TraX Documentation
Release 1.0

Luka Cehovin

January 19, 2017

Contents

1 TraX protocol specification

L1 Definitions e e e e e e
1.2 Message format L e e e e e e e e e e e e e e e e
1.3 Protocol messages and states e e e e e e e
1.4 Regionformats L
1.5 TImageformats L e e e

2 Reference C library

2.1 Requirements and building L e e
2.2 Documentationo u i e e e e e e e e e e e e
2.3 Integration example L L e e e e e e e e e e e e e

3 Library C++ wrapper

3.1 Requirements and building e
3.2 Documentation oo e e e e e e e e e e e e e e
3.3 Integrationexample L L e e e e e e e e e e e e e e e

4 Python implementation

4.1 Requirements and SUPPOTE v v v i v e e e e e e e e e e e e e e e e e e e
4.2 Documentation i i e e e e e e e e e e e e e e e e e
4.3 Integrationexample

5 Matlab/Octave wrappers

5.1 Requirements and building oL e e e
5.2 Documentation e e e e e e e
5.3 Integrationexample Lo e e e e e e e e

6 Support modules
6.1 Clientutilities o e e e e e e e e e e e e e e
6.2 OpenCV CONVErSIONS . . .« v v v v v vt e e e e e e e e e e e e e e e e e e

7 Contributions and development

8 Protocol adoption

8.1 Trackers e e e
8.2 Applications L. e e e e e e e e e e
Python Module Index

AN B W W W

O O &

23
23
23
27

29
29
29
31

33
33
33
34

37
37
37

39

41
41
41

43

TraX Documentation, Release 1.0

Welcome to TraX reference library documentation. TraX stands for visual Tracking eXchange, the protocol was
designed to make development and testing of visual tracking algorithms simpler and faster. This documentation
describes the protocol specification but also documents the reference library that implements the protocol and can be
used to add support to visual tracking programs quickly and without the need to understand the low-level details.

The source code for the reference library is availabe on GitHub under Lesser GPL v3.0 license.

Contents 1

https://github.com/votchallenge/trax/
https://www.gnu.org/licenses/lgpl-3.0.en.html

TraX Documentation, Release 1.0

2 Contents

CHAPTER 1

TraX protocol specification

The TraX protocol is designed with simplicity of integration in mind, but is also flexible enough to allow extensions
and custom use-cases. The protocol is primarily based on the a mechanism that all modern operating systems provide
and requires no additional dependencies - standard input and output streams of a process. However, other media, such
as TCP streams can also be used, the main idea is that the protocol communication is embedded the communication
between the tracker process and the control process in these streams. The communication is divided into line-based
messages. Each message can be identified by a prefix that allows us to filter out tracker custom output from the
protocol communication.

1.1 Definitions

We adopt the standard client-server terminology when describing the interaction, although the definition is a bit coun-
terintuitive in some aspects. We define the basic terms of the protocol as:

» Server: A server is a tracker process that is providing tracking information to the client that is supplying
the server with requests — a sequence of images. Unlike traditional servers that are persistent processes that
communicate with multiple clients, the server in our case is started by a single client and is only communicating
with it.

¢ Client: A client is a process that is initiating tracking requests as well as controlling the process. In most cases
this would be an evaluation software that would aggregate tracking data for performance analysis, however,
additional use-cases can be accommodated in this scheme.

* Message: Server and client communicate with each other using messages. Each message begins in new line, is
prefixed by an unique string and ends with the end of the line. Generic message structure is defined in Message
Jformat and types of messages are defined in Protocol messages and states.

1.2 Message format

Individual message in the protocol is a line, which means that it is separated from the past and future stream content by
the new line (EOL) character. The format of all client or server messages is the same. To distinguish between arbitrary
program outputs and embedded TraX messages a prefix @@TRAX : is used. The prefix is followed immediately (with-
out white space character) by the name of the message, which is then followed by space-separated arguments. The
format is illustrated in figure below. The message header is followed by a number of mandatory message arguments.
This number depends on the type of the message and on the runtime configuration. The mandatory arguments are then
followed by a variable number of optional named arguments which consist of a key and a value part and can be used
to communicate additional data.

TraX Documentation, Release 1.0

| Message type identifier ‘ Optional named arguments

] N

@@BTRAX . type| |argl| |"arg2"| ese« |"keyl=valuel" "key2=value2" @ ess

N

MESEBQE arguments

1.2.1 Escape sequences

All the arguments can contain spaces, however, they have to be enclosed by double-quote (") symbols. If you want to
use to use the same symbol inside the argument, it has to be prefixed by back-slash (\) symbol, i.e. you have to use an
escape sequence. Similarly escape sequence is also used to denote a bach-slash character itself (written as \\) and a
newline symbol, which has to be replaced by the \n character sequence.

1.2.2 Named arguments

Named arguments consist of a key, followed by character (=) and an arbitrary value character sequence. The key
sequence may only include alphanumerical characters, dot (.) and underscore (_) and has to be at most 64 characters
long. If a key is not valid the remote party may reject the argument or terminate the connection because of an illegal
message format.

1.3 Protocol messages and states

Below we list the valid messages of the protocol as well as the states of the client and server. Despite the apparent
simplicity of the protocol its execution should be strict. An inappropriate or indecipherable message should result in
immediate termination of connection in case of both parties.

* hello (server): The message is sent by the server to introduce itself and list its capabilities. This
message specifies no mandatory arguments, however, the server can report the capabilities using the
optional named arguments. The official arguments, recognized by the first version of the protocol
are:

* trax.version (integer): Specifies the supported version of the protocol. If not present, version
1 is assumed.

* trax.name (string): Specifies the name of the tracker. The name can be used by the client to
verify that the correct algorithm is executed.

* trax.identifier (string): Specifies the identifier of the current implementation. The identifier
can be used to determine the version of the tracker.

* trax.image (string): Specifies the supported image format. See Section Region formats for the
list of supported formats. By default it is assumed that the tracker can accept file paths as image
source.

4 Chapter 1. TraX protocol specification

TraX Documentation, Release 1.0

* trax.region (string): Specifies the supported region format. See Section /mage formats for the
list of supported formats. By default it is assumed that the tracker can accept rectangles as region
specification.

e initialize (client): This message is sent by the client to initialize the tracker. The message
contains the image data and the region of the object. The actual format of the required arguments is
determined by the image and region formats specified by the server.

e frame (client): This message is sent by the client to request processing of a new image. The
message contains the image data. The actual format of the required argument is determined by the
image format specified by the server.

* state (server): This message is used by the server to send the new region to the client. The
message contains region data in arbitrary supported format (most commonly the same format that
the server proposed in the introduction message).

* quit (client, server): This message can be sent by both parties to terminate the session. The server
process should exit after the message is sent or received. This message specifies no mandatory
arguments.

The state diagram of server and client is defined by a simple automata, shown in figure below. The state changes upon
receiving appropriate messages from the opposite party. The client state automata consists of the following states:

¢ Introduction: The client waits for hello message from the server. In this message the server describes its
capabilities that the client can accept and continue the conversation by moving to initialization state, or reject it
and terminate the session by sending the quit message.

« Initialization: The client sends a initialize message with the image and the object region data. Then the
client moves to observing state.

* Observing: The client waits for a message from the server. If the received message is state then the client
processes the incoming state data and either moves to initialization, termination or stays in observing state. If
the received message is quit then the client moves to termination state.

* Termination: If initiated internally, the client sends the quit message. If the server does not terminate in a
certain amount of time, the client can terminate the server process.

The server state automata consists of the following states:
* Introduction: The server sends an introductory hel1lo message where it optionally specifies its capabilities.

« Initialization: The server waits for the initialize or quit message. In case of initialize message a
tracker is initialized with the given data and the server moves to {em reporting} state. The new state is reported
back to the client with a st ate message. In case of the quit message the server moves to termination state.

* Reporting: The server waits for the frame, initialize, or quit message. In case of {tt frame} message
the tracker is updated with the new image information and the new state is reported back to the client with a
state message. In case of initialize message a tracker is initialized with the given data and the new
state is reported back to the client with a state message. In case of the quit message the server moves to
termination state.

* Termination: If initiated internally, the server sends the quit message and then exits.

1.4 Region formats

The region can be encoded in two point-based formats. All two formats are comma-separated and illustrated graphi-
cally in figure below.

* Rectangle (rectangle): The simplest form of region format is the axis-aligned bounding box. It is described
using four values, left, top, width, and height that are separated by commas.

1.4. Region formats 5

TraX Documentation, Release 1.0

Client
— _‘_ S
@ Introduction Initialization : Observing Termination T—>@

/ __
A I A . |
ﬁ initialize frame | quit |
(")
e e it o]
=
\

: 5= 257 R A B
L Introduction Initialization < Reporting Termination
_/ ;l—/

Server I A * ¥

¢ Polygon (polygon): A more complex and flexible region description that is specified by even number of at
least six values, separated by commas that define points in the polygon (x and y coordinates).

(left, top)

(x2, y2) (x3, y3)

(x5, y5)

height

(x11, y11) (x9, y9)

(x8, y8)

(x10, y10)

width

1.5 Image formats

The image can be encoded in a form of Uniform Resource Identifiers. Currently the protocol specifies support for four
types of resources.

¢ File path (path): Image is specified by an URL to an absolute path on a local file-system that points to
a JPEG or PNG file. The server should take care of the loading of the image to the memory in this case.

6 Chapter 1. TraX protocol specification

TraX Documentation, Release 1.0

Some examples of image paths are file:///home/user/sequence/00001. jpg for Unix systems or
file://c:/user/sequence/00001. jpg.

* Memory (memory): Raw image data encoded in an URI with scheme identifier {tt image:}. The encoding
header contains information about width, height, and the pixel format. The protocol specifies support for the
following formats: single channel 8 or 16 bit intensity image (gray8 and gray16) and 3 channel 8-bit RGB
image (rgb). Note that the intensity format can also be used to encode infra-red or depth information. The
header is followed by the raw image data row after row using Base64 encoding. An example first part of the
data for a 320 x 240 RGB image is therefore image:320;240; rgb;

* Data (data): The image is encoded as a data URI using JPEG or PNG format and encoded using Base64
encoding. The server has to support decoding the image from the memory buffer directly. An example of the
first part of such data is data: image/ jpeg;base64; . ..

e URL (url): Image is specified by a general URL for the image resource which does
not fall into any of the above categories. Tipically HTTP remote resources, such as
http://example.com/sequence/0001. jpg.

1.5. Image formats 7

TraX Documentation, Release 1.0

8 Chapter 1. TraX protocol specification

CHAPTER 2

Reference C library

The TraX protocol can be implemented using the protocol specification, the protocol is quite easy to implement in
many high-level languages. However, a reference C implementation is provided to serve as a practical model of

implementation and to make the adoption of the protocol easier.

2.1 Requirements and building

The library is built using CMake build tool which generates build instructions for a given platform. The code is written
in C89 for maximum portability and the library has no external dependencies apart from the standard C library.

2.2 Documentation

All the public functionality of the library is described in the t rax.h header file, below is a summary of individual

functions that are available in the library.

2.2.1 Communication

TRAX_ERROR
Value that indicates protocol error

TRAX OK

Value that indicates success of a function call

TRAX HELLO
Value that indicates introduction message

TRAX INITIALIZE
Value that indicates initialization message

TRAX FRAME
Value that indicates frame message

TRAX QUIT
Value that indicates quit message

TRAX STATE
Value that indicates status message

trax_logging
Structure that describes logging handle.

https://cmake.org/

TraX Documentation, Release 1.0

trax bounds
Structure that describes region bounds.

trax handle
Structure that describes a protocol state for either client or server.

trax_image
Structure that describes an image.

trax_region
Structure that describes a region.

trax_properties
Structure that contains an key-value dictionary.

trax_logging trax_no_log
A constant to indicate that no logging will be done.

trax_bounds trax_no_bounds
A constant to indicate that here are no bounds.

const char* trax_version ()
Returns a string version of the library for debugging purposes. If possible, this version is defined during compi-
lation time and corresponds to Git hash for the current revision.

Returns Version string as a constant character array

trax_logging trax_logger_setup (trax_logger callback, void* data, int flags)
A function that can be used to initialize a logging configuration structure.

Parameters
* callback — Callback function used to process a chunk of log data
* data — Additional data passed to the callback function as an argument
» flags — Optional flags for logger

Returns A logging structure for the given data

trax_logging trax_logger_setup_f£file (FILE* file)
A handy function to initialize a logging configuration structure for file logging. Internally the function calls
trax_logger_setup().

Parameters
» file - File object, opened for writing, can also be stdout or stderr
Returns A logging structure for the given file

trax_handle* trax_client_setup_£file (int input, int output, trax_logging log)
Setups the protocol state object for the client. It is assumed that the tracker process is already running (how this
is done is not specified by the protocol). This function tries to parse tracker’s introduction message and fails if
it is unable to do so or if the handshake fails (e.g. unsupported format version).

Parameters
* input - Stream identifier, opened for reading, used to read server output
* output - Stream identifier, opened for writing, used to write messages
* log - Logging structure

Returns A handle object used for further communication or NULL if initialization was unsuccessful

10 Chapter 2. Reference C library

TraX Documentation, Release 1.0

trax_handle* trax_client_setup_socket (int server, int timeout, trax_logging log)
Setups the protocol state object for the client using a bi-directional socket. It is assumed that the connection
was already established (how this is done is not specified by the protocol). This function tries to parse tracker’s
introduction message and fails if it is unable to do so or if the handshake fails (e.g. unsupported format version).

Parameters
¢ server — Socket identifier, used to read communcate with tracker
* log - Logging structure
Returns A handle object used for further communication or NULL if initialization was unsuccessful

int trax_client_wait (frax_handle* client, trax_region** region, trax_properties* properties)
Waits for a valid protocol message from the server.

Parameters
* client - Client state object

* region — Pointer to current region for an object, set if the response is TRAX STATE,
otherwise NULL

* properties — Additional properties

Returns Integer value indicating status, can be either TRAX STATE, TRAX QUIT, or
TRAX ERROR

inttrax_client_initialize (trax_handle* client, trax_image* image, trax_region* region,
trax_properties* properties)

Sends an initialize message to server.

Parameters
* client — Client state object
* image - Image frame data
* region - Initialization region
* properties — Additional properties object

Returns Integer value indicating status, can be either TRAX_OK or TRAX_ERROR

int trax_client_frame (trax_handle* client, trax_image™* image, trax_properties* properties)

Sends a frame message to server.

Parameters
* client — Client state object
* image - Image frame data
* properties — Additional properties

Returns Integer value indicating status, can be either TRAX_OK or TRAX_ERROR

trax_handle* trax_server_setup (trax_configuration config, trax_logging log)
Setups the protocol for the server side and returns a handle object.

Parameters

* config — Configuration structure

* log - Logging structure

2.2. Documentation 11

TraX Documentation, Release 1.0

Returns A handle object used for further communication or NULL if initialization was unsuccessful

trax_handle* trax_server_setup_f£file (trax_configuration config, int input, int output,
trax_logging log)
Setups the protocol for the server side based on input and output stream and returns a handle object.

Parameters
* config — Configuration structure
* input - Stream identifier, opened for reading, used to read client output
* output — Stream identifier, opened for writing, used to write messages
* log - Logging structure
Returns A handle object used for further communication or NULL if initialization was unsuccessful

inttrax server wait (frax_handle* server, trax_image** image, trax_region** region,
trax_properties* properties)

Waits for a valid protocol message from the client.

Parameters
* server — Server state object

* image - Pointer to image frame data, set if the response is not TRAX QUIT or
TRAX_ERROR, otherwise NULL

* region - Pointer to initialization region, set if the response is TRAX INITIALIZE, oth-
erwise NULL

* properties — Additional properties
Returns Integer value indicating status, can be either TRAX INITIALIZE, TRAX_ FRAME,
TRAX_QUIT,or TRAX ERROR
int trax_server_reply (trax_handle* server, trax_region® region, trax_properties* properties)

Sends a status reply to the client.

Parameters
* server — Server state object
* region — Current region of an object
* properties — Additional properties
Returns Integer value indicating status, can be either TRAX_OK or TRAX_ERROR
int trax_cleanup (frax_handle** handle)
Used in client and server. Closes communication, sends quit message if needed. Releases the handle structure.
Parameters
* handle - Pointer to state object pointer
Returns Integer value indicating status, can be either TRAX_ OK or TRAX_ERROR

int trax_set_parameter (frax_handle* handle, int id, int value)
Sets the parameter of the client or server instance.

int trax_get_parameter (irax_handle* handle, int id, int* value)
Gets the parameter of the client or server instance.

12 Chapter 2. Reference C library

TraX Documentation, Release 1.0

2.2.2 Image

TRAX IMAGE_EMPTY
Empty image type, not usable in any way but to signify that there is no data.

TRAX IMAGE_PATH
Image data is provided in a file on a file system. Only a path is provided.

TRAX IMAGE_URL
Image data is provided in a local or remote resource. Only a URL is provided.

TRAX IMAGE_MEMORY
Image data is provided in a memory buffer and can be accessed directly.

TRAX_ IMAGE_BUFFER
Image data is provided in a memory buffer but has to be decoded first.

TRAX IMAGE_BUFFER_ILLEGAL
Image buffer is of an unknown data type.

TRAX_ IMAGE_BUFFER_PNG
Image data is encoded as PNG image.

TRAX IMAGE_BUFFER_JPEG
Image data is encoded as JPEG image.

TRAX IMAGE_MEMORY_ ILLEGAL
Image data is available in an unknown format.

TRAX_ IMAGE_MEMORY_ GRAYS8
Image data is available in 8 bit per pixel format.

TRAX_IMAGE_MEMORY_ GRAY16
Image data is available in 16 bit per pixel format.

TRAX IMAGE_MEMORY_RGB
Image data is available in RGB format with three bytes per pixel.

void trax_image_release (frax_image** image)
Releases image structure, frees allocated memory.

Parameters

* image — Pointer to image structure pointer (the pointer is set to NULL if the structure is
destroyed successfuly)

trax_image* trax_image_create_path (const char* path)
Creates a file-system path image description.

Parameters
* url - File path string, it is copied internally
Returns Image structure pointer

trax_image* trax_image_create_url (const char* url)
Creates a URL path image description.

Parameters
* url — URL string, it is copied internally

Returns Image structure pointer

2.2. Documentation 13

TraX Documentation, Release 1.0

trax_image* trax_image_create_memory (int width, int height, int format)
Creates a raw in-memory buffer image description. The memory is not initialized, you have do this manually.

Parameters

* width - Image width

* height — Image height

* format — Image format, see format type constants for options
Returns Image structure pointer

trax_image* trax_image_create_buffer (int length, const char* data)
Creates a file buffer image description.

Parameters

* length — Length of the buffer

* data — Character array with data, the buffer is copied
Returns Image structure pointer

int trax_image_get_type (const frax_image* image)
Returns a type of the image handle.

Parameters
* image - Image structure pointer
Returns Image type code, see image type constants for more details

const char* trax_image_get_path (const rrax_image* image)

Returns a file path from a file-system path image description. This function returns a pointer to the internal data
which should not be modified.

Parameters
* image - Image structure pointer
Returns Pointer to null-terminated character array

const char* trax_image_get_url (const trax_image* image)

Returns a file path from a URL path image description. This function returns a pointer to the internal data which
should not be modified.

Parameters
* image — Image structure pointer
Returns Pointer to null-terminated character array

void trax_image_get_memory header (const frax_image™* image, int* width, int* height, int* format)
Returns the header data of a memory image.

Parameters
* image - Image structure pointer
* width — Pointer to variable that is populated with width of the image
* height — Pointer to variable that is populated with height of the image

» format — Pointer to variable that is populated with format of the image, see format con-
stants for options

14 Chapter 2. Reference C library

TraX Documentation, Release 1.0

char* trax_image_write_memory_row (frax_image* image, int row)
Returns a pointer for a writeable row in a data array of an image.

Parameters
* image - Image structure pointer
* row — Number of row
Returns Pointer to character array of the line

const char* trax_image_get_memory_row (const trax_image* image, int row)
Returns a read-only pointer for a row in a data array of an image.

Parameters
* image - Image structure pointer
* row — Number of row
Returns Pointer to character array of the line

const char* trax_image_get_buffer (const rrax_image* image, int* length, int* format)
Returns a file buffer and its length. This function returns a pointer to the internal data which should not be
modified.

Parameters
* image — Image structure pointer
* length — Pointer to variable that is populated with buffer length
* format — Pointer to variable that is populated with buffer format code

Returns Pointer to character array

2.2.3 Region

TRAX_ REGION_EMPTY
Empty region type, not usable in any way but to signify that there is no data.

TRAX REGION_SPECIAL
Special code region type, only one value avalable that can have a defined meaning.

TRAX_REGION_RECTANGLE
Rectangle region type. Left, top, width and height values available.

TRAX REGION_POLYGON
Polygon region type. Three or more points available with x and y coordinates.

... c:macro:: TRAX_REGION_MASK

TRAX_ REGION_ANY
Any region type, a shortcut to specify that any supported region type can be used.

void trax_region_release (trax_region** region)
Releases region structure, frees allocated memory.

Parameters

* region — Pointer to region structure pointer (the pointer is set to NULL if the structure is
destroyed successfuly)

int trax_region_get_type (const trax_region* region)
Returns type identifier of the region object.

2.2. Documentation 15

TraX Documentation, Release 1.0

Parameters
* region — Region structure pointer
Returns One of the region type constants

trax_region* trax_region_create_special (int code)
Creates a special region object.

Parameters
* code — A numerical value that is contained in the region type
Returns A pointer to the region object

void trax_region_set_special (frax_region* region, int code)
Sets the code of a special region.

Parameters
* region — Region structure pointer
¢ code — The new numerical value

int trax_region_get_special (const frax_region* region)
Returns a code of a special region object if the region is of special type.

Parameters
* region — Region structure pointer
Returns The numerical value

trax_region* trax_region_create_rectangle (float x, float y, float width, float height)
Creates a rectangle region.

Parameters

* x — Left offset

» y — Top offset

* width — Width of rectangle

* height — Height of rectangle
Returns A pointer to the region object

void trax_region_set_rectangle (frax_region* region, float x, float y, float width, float height)
Sets the coordinates for a rectangle region.

Parameters
* region — A pointer to the region object
* x — Left offset
» y — Top offset
* width — Width of rectangle
* height — Height of rectangle

void trax_region_get_rectangle (const trax_region® region, float* x, float* y, float* width,
float* height)
Retreives coordinate from a rectangle region object.

Parameters

* region — A pointer to the region object

16 Chapter 2. Reference C library

TraX Documentation, Release 1.0

» x — Pointer to left offset value variable

» y — Pointer to top offset value variable

* width — Pointer to width value variable

* height — Pointer to height value variable

trax_region* trax_region_create_polygon (int count)
Creates a polygon region object for a given amout of points. Note that the coordinates of the points are arbitrary
and have to be set after allocation.

Parameters
* code — The number of points in the polygon
Returns A pointer to the region object

void trax_region_set_polygon_point (frax_region® region, int index, float x, float y)
Sets coordinates of a given point in the polygon.

Parameters
* region — A pointer to the region object
* index - Index of point
* x — Horizontal coordinate
* y — Vertical coordinate

void trax_region_get_polygon_point (const rrax_region™* region, int index, float* x, float* y)
Retrieves the coordinates of a specific point in the polygon.

Parameters
* region — A pointer to the region object
* index - Index of point
* x — Pointer to horizontal coordinate value variable
* y — Pointer to vertical coordinate value variable

int trax_region_get_polygon_count (const frax_region™® region)
Returns the number of points in the polygon.

Parameters
* region — A pointer to the region object
Returns Number of points

trax_bounds trax_region_bounds (const trax_region® region)
Calculates a bounding box region that bounds the input region.

Parameters
* region — A pointer to the region object
Returns A bounding box structure that contains values for left, top, right, and bottom

trax_region* trax_region_clone (const trax_region* region)
Clones a region object.

Parameters

* region — A pointer to the region object

2.2. Documentation 17

TraX Documentation, Release 1.0

Returns A cloned region object pointer

trax_region* trax_region_convert (const trax_region* region, int format)
Converts region between different formats (if possible).

Parameters

* region — A pointer to the region object

* format — One of the format type constants
Returns A converted region object pointer

float trax_region_contains (const trax_region* region, float x, float y)
Calculates if the region contains a given point.

Parameters
* region — A pointer to the region object
* x — X coordinate of the point
* y — Y coordinate of the point
Returns Returns zero if the point is not in the region or one if it is

float trax_region_overlap (const frrax_region*® a, const trax_region* b, const trax_bounds bounds)
Calculates the spatial Jaccard index for two regions (overlap).

Parameters
* a — A pointer to the region object
* b — A pointer to the region object

Returns A bounds structure to contain only overlap within bounds or t rax_no_bounds if no
bounds are specified

char* trax_region_encode (const frax_region™ region)
Encodes a region object to a string representation.

Parameters
* region — A pointer to the region object
Returns A character array with textual representation of the region data

trax_region* trax_region_decode (const char* data)
Decodes string representation of a region to an object.

Parameters
* region — A character array with textual representation of the region data

Returns A pointer to the region object or NULL if string does not contain valid region data

2.2.4 Properties
trax_properties* trax_properties_create ()
Create an empty properties dictionary.
Returns A pointer to a properties object

void trax_properties_release (frax_properties** properties)
Destroy a properties object and clean up the memory.

Parameters

18 Chapter 2. Reference C library

TraX Documentation, Release 1.0

* properties — A pointer to a properties object pointer

void trax_properties_clear (trax_properties* properties)
Clears a properties dictionary making it empty.

Parameters
* properties — A pointer to a properties object

void trax_properties_set (trax_properties* properties, const char* key, const char* value)
Set a string property for a given key. The value string is cloned.

Parameters
* properties — A pointer to a properties object
* key — A key for the property, only keys valid according to the protocol are accepted
* value - The value for the property, the string is cloned internally

void trax_properties_set_int (frax_properties* properties, const char* key, int value)
Set an integer property. The value will be encoded as a string.

Parameters
* properties — A pointer to a properties object
* key — A key for the property, only keys valid according to the protocol are accepted
* value — The value for the property

void trax_properties_set_float (frax_properties* properties, const char* key, float value)
Set an floating point value property. The value will be encoded as a string.

Parameters
* properties — A pointer to a properties object
* key — A key for the property, only keys valid according to the protocol are accepted
* value — The value for the property

char* trax_properties_get (const trax_properties* properties, const char* key)
Get a string property. The resulting string is a clone of the one stored so it should be released when not needed
anymore.

Parameters
* properties — A pointer to a properties object
* key — A key for the property
Returns The value for the property or NULL if there is no value associated with the key
int trax_properties_get_int (const trax_properties* properties, const char* key, int def’)
Get an integer property. A stored string value is converted to an integer. If this is not possible or the
property does not exist a given default value is returned.
Parameters
* properties — A pointer to a properties object
* key — A key for the property

* def — Default value for the property

2.2. Documentation 19

TraX Documentation, Release 1.0

Returns The value for the property or default value if there is no value associated with the key or
conversion from string is impossible

float trax_properties_get_float (const frrax_properties* properties, const char* key, float def’)
Get an floating point value property. A stored string value is converted to an integer. If this is not possible or the
property does not exist a given default value is returned.

Parameters
* properties — A pointer to a properties object
* key — A key for the property
* def — Default value for the property

Returns The value for the property or default value if there is no value associated with the key or
conversion from string is impossible

void trax_properties_enumerate (frax_properties* properties, trax_enumerator enumerator, const
void* object)
Iterate over the property set using a callback function. An optional pointer can be given and is forwarded to the
callback.

Parameters
* properties — A pointer to a properties object
* enumerator — A pointer to the enumerator function that is called for every key-value pair

* object — A pointer to additional data for the enumerator function

2.3 Integration example

The library can be easily integrated into C and C++ code (although a C++ wrapper also exists) and can be also linked
into other programming languages that enable linking of C libraries. Below is an sripped-down example of a C tracker
skeleton with a typical tracking loop. Note that this is not a complete example and servers only as a demonstration of
a typical tracker on a tracking-loop level.

#include <stdio.h>

int main(int argc, charxx argv)
{
int i;
FILEx out;
rectangle_type region;
image_type image;

out = fopen("trajectory.txt", "w");

region = read_bounding_box () ;

image = read_image(1l);

region = initialize_tracker (region, image);

write_frame (out, region);

for (i = 2; ; 1i++)
{
image = read_image (i) ;
region = update_tracker (image);

20 Chapter 2. Reference C library

22

23

24

25

26

27

20

21

22

23

24

25

26

27

28

29

30

31

32

33

39

40

41

42

43

44

45

46

47

TraX Documentation, Release 1.0

write_frame (out, region);

fclose (out) ;
return 0;

The code above can be modified to use the TraX protocol by including the C library header and changing the tracking
loop to accept frames from the protocol insead of directly reading them from the filesystem. It also requires linking
the protocol library (1ibt rax) when building the tracker executable.

#include <stdio.h>

// Include TraX library header
#include "trax.h"

int main(int argc, charxx argv)

{

int run = 1;
trax_imagex img = NULL;
trax_regionx reg = NULL;

// Call trax_server_setup at the beginning
trax_handle* handle;

trax_configuration config;
config.format_region = TRAX_REGION_RECTANGLE;
config.format_image = TRAX_IMAGE_PATH;

handle = trax_server_setup(config, trax_no_loqg);

while (run)

{

int tr = trax_server_wait (handle, &img, ®, NULL);

// There are two important commands. The first one 1is
// TRAX_INITIALIZE that tells the tracker how to initialize.
if (tr == TRAX_INITIALIZE) {

rectangle_type region = initialize_tracker(
region_to_rectangle (reg), load_image (img));
trax_server_reply (handle, rectangle_to_region(region), NULL);

} else
// The second one is TRAX FRAME that tells the tracker what to process next.
if (tr == TRAX_FRAME) {

rectangle_type region = update_tracker (load_image (img)) ;
trax_server_reply (handle, rectangle_to_region(region), NULL);

}
// Any other command is either TRAX_QUIT or illegal, so we exit.
else {

run = 0;

if (img) trax_image_release (&img);
if (reg) trax_region_release(&req);

2.3. Integration example 21

48

49

50

51

53

54

TraX Documentation, Release 1.0

// TraX: Call trax_cleanup

trax_cleanup (&¢handle) ;

return 0O;

L

at

the end

22

Chapter 2. Reference C library

CHAPTER 3

Library C++ wrapper

The main functionality of the reference library is written in pure C, however, it also offers a C++ wrapper if used
with a C++ compiler. This wrapper uses classes and objects as well as reference counting for memory management,
making is more suitable choice when using the reference library in a C++ algorithm.

3.1 Requirements and building

No additional requirements are necessary for building the wrapper but a C++ compiler.

3.2 Documentation

The wrapper is composed of several classes, mostly following the underlying C functions. All the classes are contained
in t rax namespace.

class Configuration
A wrapper class for

Configuration (trax_configuration config)
Configuration (int image_formats, int region_formats)
~Configuration ()

class Logging
A wrapper class for

Logging (trax_logging logging)
Logging (trax_logger callback = NULL, void *data = NULL, int flags = 0)
~Logging ()

class Bounds

Bounds ()
Bounds (trax_bounds bounds)
Bounds (float left, float top, float right, float bottom)

~Bounds ()

23

TraX Documentation, Release 1.0

class Client

Client (int input, int output, Logging logger)
Sets up the protocol for the client side and returns a handle object.

Client (int server, Logging logger, int timeout = -1)
Sets up the protocol for the client side and returns a handle object.

~Client ()

int wait (Region ®ion, Properties &properties)
Waits for a valid protocol message from the server.

int initialize (const /mage &image, const Region ®ion, const Properties &properties)
Sends an initialize message.

int £rame (const /mage &image, const Properties &properties)
Sends a frame message.

const Configuration configuration ()

class Server

Server (Configuration configuration, Logging log)
Sets up the protocol for the server side and returns a handle object.

~Server ()

int wait (/mage &image, Region ®ion, Properties &properties)
Wiaits for a valid protocol message from the client.

int reply (const Region ®ion, const Properties &properties)
Sends a status reply to the client.

const Configuration configuration ()

class Image

Image ()
Image (const /mage &original)

static /mage create_path (const std::string &path)
Creates a file-system path image description. See t rax_image_create_path ().

static /mage create_url (const std::string &url)
Creates a URL path image description. See t rax_image_create_url ().

static /mage create_memory (int width, int height, int format)
Creates a raw buffer image description.See t rax_image create_memory ().

static /mage create_buffer (int length, const char *data)
Creates a file buffer image description. See t rax_image create_buffer().

~Image ()
Releases image structure, frees allocated memory.

int type () const
Returns a type of the image handle. See t rax_image_get_type ().

bool empty () const
Checks if image container is empty.

24

Chapter 3. Library C++ wrapper

TraX Documentation, Release 1.0

const std::string get_path () const
Returns a file path from a file-system path image description. This function returns a pointer to the internal
data which should not be modified.

const std::string get_url () const
Returns a file path from a URL path image description. This function returns a pointer to the internal data
which should not be modified.

void get_memory_header (int *width, int *height, int *format) const
Returns the header data of a memory image.

char *write_memory row (int row)
Returns a pointer for a writeable row in a data array of an image.

const char *get_memory_row (int row) const
Returns a read-only pointer for a row in a data array of an image.

const char *get_buffer (int *length, int *format) const
Returns a file buffer and its length. This function returns a pointer to the internal data which should not be
modified.

class Region

Region ()
Creates a new empty region.

Region (const Region &original)
Creates a clone of region.

static Region create_special (int code)
Creates a special region object. Only one paramter (region code) required.

static Region create_rectangle (float x, float y, float width, float height)
Creates a rectangle region.

static Region create_polygon (int count)
Creates a polygon region object for a given amout of points. Note that the coordinates of the points are
arbitrary and have to be set after allocation.

~Region ()
Releases region, frees allocated memory.

int type () const
Returns type identifier of the region object.

bool empty () const
Checks if region container is empty.

void set (int code)
Sets the code of a special region.

int get () const
Returns a code of a special region object.

void set (float x, float y, float width, float height)
Sets the coordinates for a rectangle region.

void get (float *x, float *y, float *width, float *height) const
Retreives coordinate from a rectangle region object.

void set_polygon_point (int index, float x, float y)
Sets coordinates of a given point in the polygon.

3.2.

Documentation 25

TraX Documentation, Release 1.0

void get_polygon_point (int index, float *x, float *y) const
Retrieves the coordinates of a specific point in the polygon.

int get_polygon_count () const
Returns the number of points in the polygon.

Bounds bounds () const
Computes bounds of a region.

Region convert (int type) const
Convert region to one of the other types if possible.

float overlap (const Region ®ion, const Bounds &bounds = Bounds()) const
Calculates the Jaccard index overlap measure for the given regions with optional bounds that limit the
calculation area.

class Properties

Properties ()
Create a property object.

Properties (const Properties &original)
A copy constructor.

~Properties ()
Destroy a properties object and clean up the memory.

void clear ()
Clear a properties object.

void set (const std::string key, const std::string value)
Set a string property (the value string is cloned).

void set (const std::string key, int value)
Set an integer property. The value will be encoded as a string.

void set (const std::string key, float value)
Set an floating point value property. The value will be encoded as a string.

std::string get (const std::string key, const std::string &def)
Get a string property.

int get (const std::string key, int def’)
Get an integer property. A stored string value is converted to an integer. If this is not possible or the
property does not exist a given default value is returned.

float get (const std::string key, float def)
Get an floating point value property. A stored string value is converted to an float. If this is not possible or
the property does not exist a given default value is returned.

bool get (const std::string key, bool def')
Get an boolean point value property. A stored string value is converted to an integer and checked if it is
zero. If this is not possible or the property does not exist a given default value is returned.

void enumerate (Enumerator enumerator, void *object)
Iterate over the property set using a callback function. An optional pointer can be given and is forwarded
to the callback.

void £rom_map (const std::map<std::string, std::string> &m)
Adds values from a dictionary to the properties object.

26

Chapter 3. Library C++ wrapper

20
21
22
23
24
25
26
27
28

29

TraX Documentation, Release 1.0

void to_map (std::map<std::string, std::string> &m)
Copies values in the properties object into the given dictionary.

3.3 Integration example

In C++ tracker implementations you can use either the C++ wrapper or basic C protocol implementation. The wrapper
is more conveninent as it is object-oriented and provides automatic deallocation of resources via reference counting.
Below is an sripped-down example of a C++ tracker skeleton with a typical tracking loop. Note that this is not a
complete example and servers only as a demonstration of a typical tracker on a tracking-loop level.

#include <iostream>
#include <fstream>

using namescpace std;

int main(int char++ argv)

{

argc,

int i;

FILE+ out;
Rectangle region;
Image image;
Tracker tracker;

ofstream out;

output.open("trajectory.txt", ofstream::out);

region = read_bounding_box () ;
image = read_image(1l);
region = tracker.initialize(region, image);

out << region << endl;

for (i = 2; ; 1i++)
{
image = read_image (i) ;
region = tracker.update (image);

out << region << endl;

out.close();
return O;

The code above can be modified to use the TraX protocol by including the C/C++ library header and changing the
tracking loop to accept frames from the protocol insead of directly reading them from the filesystem. It also requires

linking the protocol library (1ibt rax) when building the tracker executable.

#include <stdio.h>

// Include TraX library header
#include "trax.h"

using namespace std;

int main(char++ argv)

{

int argc,

3.3. Integration example

27

20

21

22

23

24

25

26

27

28

29

40

41

42

43

44

45

46

47

48

49

50

51

TraX Documentation, Release 1.0

int run = 1;
trax_imagex img = NULL;
trax_regionx reg = NULL;

// Initialize protocol
trax::Server handle(trax::Configuration (TRAX_IMAGE_PATH,
TRAX_REGION_RECTANGLE), trax_no_log);

while (run)

{
trax::Image image;
trax::Region region;
trax::Properties properties;

int tr = handle.wait (image, region, properties);
// There are two important commands. The first one 1is
// TRAX INITIALIZE that tells the tracker how to initialize.

if (tr == TRAX_INITIALIZE) {

rectangle_type region = tracker.initialize(
region_to_rectangle (region), load_image (image)) ;

handle.reply(rectangle_to_region(region), trax::Properties());
} else
// The second one is TRAX_FRAME that tells the tracker what to process next.
if (tr == TRAX_FRAME) {

rectangle_type region = tracker.update (load_image (image)) ;

handle.reply (rectangle_to_region(region), trax::Properties());

}
// Any other command is either TRAX QUIT or illegal, so we exit.
else {

run = 0;

return O;

28

Chapter 3. Library C++ wrapper

CHAPTER 4

Python implementation

4.1 Requirements and support
4.2 Documentation

4.2.1 Main module

Implementation of the TraX protocol. The current implementation is written in pure Python and is therefore a bit slow.

class t rax .MessageType
The message type container class

exception t rax . TraXError
A protocol error class

4.2.2 Server-side communication
Implementation of the TraX sever. This module provides implementation of the server side of the protocol and is
therefore meant to be used in the tracker.

class trax.server.Request
A container class for client requests. Contains fileds type, image, region and parameters.

class trax.server.Server (options, verbose=False)
TraX server implementation class.

quit ()
Sends quit message and end terminates communication.

status (region, properties=None)
Reply to client with a status region and optional properties.

Parameters
* region (trax.region.Region)— Resulting region object.
* properties (dict)— Optional arguments as a dictionary.

wait ()
Wait for client message request. Recognize it and parse them when received .

Returns A request structure

29

TraX Documentation, Release 1.0

Return type trax.server.Request

class trax.server.ServerOptions (region, image, name=None, identifier=None)
TraX server options

4.2.3 Image module

Image description classes.

trax.image .BUFFER = ‘buffer’
Constant for encoded memory buffer image

class trax.image .BufferImage (data=None, format="unknown’)
Image encoded in a memory buffer stored in JPEG or PNG file format

class trax.image .FileImage (path=None)
Image saved in a local file

Variables path — Path to the image file

class t rax.image.Image (type)
Base class for all image containers

Variables type — Type constant for the image

trax.image .MEMORY = ‘memory’
Constant for raw memory image

class trax . image .MemoryImage (image)
Image saved in memory as a numpy array

trax.image.PATH = ‘path’
Constant for file path image

trax.image.URL = ‘url’
Constant for remote or local URL image

class trax.image . URLImage (url=None)
Image saved in a local or remote resource

Variables url — URL of the image

trax.image.parse (string)
Parses string image representation to one of the containers

4.2.4 Region module

Region description classes.

trax.region.POLYGON = ‘polygon’
Constant for polygon region type

class trax.region.Polygon (points)
Polygon region

Variables
* points (1ist)— List of points as tuples [(x1,y1), (x2,y2),...,(xN,yN)]

* count (int) - number of points

30 Chapter 4. Python implementation

TraX Documentation, Release 1.0

trax.region.RECTANGLE = ‘rectangle’
Constant for rectangle region type

class trax.region.Rectangle (x=0, y=0, width=0, height=0)
Rectangle region

Variables
* x — top left x coord of the rectangle region
* y (float) - top left y coord of the rectangle region
* w(float)— width of the rectangle region
* h (float) - height of the rectangle region

class trax.region.Region (type)
Base class for all region containers

Variables type — type of the region

trax.region.SPECIAL = ‘special’
Constant for special region type

class trax.region.Special (code)
Special region

Variables code — Code value

trax.region.convert (region, to)
Perform conversion from one region type to another (if possible).

Parameters
* region (Region) — original region
* to (str)—type of desired result

Result converter region or None if conversion is not possible

4.3 Integration example

Below is a simple example of a Python code skeleton for a tracker, exposing its tracking loop but hidding all tracker-
specific details to keep things clear.

tracker = Tracker ()

trajectory = [];

i =1

rectangle = read_bounding_box ()
image = read_image (i)

rectangle = tracker.initialize (rectangle, image)
trajectory.append(rectangle)

while True:
i =1+ 1
image = read_image (1)
rectangle = tracker.update (image)
trajectory.append(rectangle)

write_trajectory(trajectory)

4.3. Integration example 31

TraX Documentation, Release 1.0

To make the tracker work with the TraX protocol you have to modify the above code in the following way and also

make sure that the t rax module will be available at runtime.

import trax.server
import trax.region
import trax.image
import time

tracker = Tracker()
options = trax.server.ServerOptions (trax.region.RECTANGLE, trax.image.PATH)

with trax.server.Server (options) as server:
while True:

request = server.wait ()

if request.type in ["quit", "error"]:
break

if request.type == "initialize":

rectangle = tracker.initialize (get_rectangle (request.region),
load_image (request.image))
else:
rectangle = tracker.update (load_image (request.image))

server.status (get_region(rectangle))

32 Chapter 4. Python implementation

CHAPTER 5

Matlab/Octave wrappers

Matlab is a multi-paradigm numerical computing environment and a programming language, very popular among
computer vision researchers. Octave is its open-source counterpart that is sometimes used as a free alternative. Both
environments are by themselves quite limiting in terms of low-lever operating system access required for the TraX
protocol to work, but offer integration of C/C++ code in the scripting language, tipically via MEX mechanism (dy-
namic libraries with a predefined entry point). Using this mechanism a reference C implementation can be wrapped
and used in a Matlab/Octave tracker.

5.1 Requirements and building

To compile t raxserver MEX function manually you need a MEX compiled configured correctly on your computer.

Since the MEX function is only a wrapper for the C library, you first have to ensure that the C library is compiled
and available in a subdirectory of the project. Then go to Matlab/Octave console, move to the support/matlab/
subdirectory and execute compile_trax script. If the script finishes correcty you will have a MEX script (ex-
ension varies from platform to platform) available in the directory. If the location of the TraX library is not found
automatically, you have to verfy that it exists and possibly enter the path to its location manually.

5.2 Documentation

The traxserver MEX function is essentially used to send or receive a protocol message and parse it. It accepts
several parameters, the first one is a string of a command that you want execute.

[response] = traxserver ('setup', region_formats, image_formats);

The call setups the protocol and has to be called only once at the beginning of your tracking algorithm. The two
mandatory input arguments are:

* region_formats: A string that specifies region format that is supported by the algorithm. Any other formats
should be either converted by the client or the client should terminate if it is unable to provide data in correct
format. Possible values are: rectangle or polygon, see protocol specification for more details.

« image_formats: A string or specifies the image format that are supported by the algorithm. Any other formats
should be either converted by the client or the client should terminate if it is unable to provide data in correct
format. Possible values are: path, url, memory or data, see protocol specification for more details.

A single output argument is a boolean value that is true if the initialization was successful.

[image, region, parameters] = traxserver ('wait');

33

TraX Documentation, Release 1.0

A call blocks until a protocol message is received from the client, parses it and returns the data. Based on the type of
message, some output arguments will be initialized as empty which also hepls determining the type of the message.

* image: Image data in requested format. If the variable is empty then the termination request was received and
the tracker can exit.

* region: Region data in requested format. If the variable is set then an initialization request was received and the
tracker should be (re)initialized with the specified region. If the variable is empty (but the image variable is not)
then a new frame is received and should be processed.

[response] = traxserver ('state', region, parameters);

A call sends a status message back to the client specifying the region for the current frame as well as the optional
parameters. The two input arguments are:

* region: Region data in requested format.

* parameters (optional): Arbitrary output parameters used for debugging or any other purposes. The parameters
are provided either in a single-level structure (no nested structures, just numbers or strings for values) or a N x
2 cell matrix with string keys in the first column and values in the second. Note that the protocol restricts the
characters used for parameter names and limits their length.

[response] = traxserver ('quit', arameters) ;
P P

Sends a quit message to the client specifying that the algorithm wants to terminate the tracking session. Additional
parameters can be specified using an input argument.

¢ parameters (optional): Arbitrary output parameters used for debugging or any other purposes, formats same as
above.

5.2.1 Image data

Image data is stored in a matrix. For file path and URL types this is a one-dimensional char sequence, for in-memory
image this is a 3-dimensional matrix of type uint 8 with raw image data, ready for processing and for data type it is
in a structure with fields format and data that contain encoding format (JPEG or PNG) and raw file data.

5.2.2 Region data

Region data for rectangle and polygon types is stored in a one-dimensional floating-point matrix. For rectangle the
number of elements is 4, for polygon it is an even number, greater or equal than 6 (three points). In all cases the first
coordinate is in the horizontal dimension (columns) and not the way Matlab/Octave usually addresses matrices.

5.2.3 Internals

Additionaly the function also looks for the TRAX_SOCKET environmental variable that is used to determine that the
server has to be set up using TCP sockers and that a TCP server is opened (the port or IP address and port are proviede
as the value of the variable) and waiting for connections from the tracker. This mechanism is important for Matlab on
Microsoft Windows because the standard streams are closed at startup and cannot be used.

5.3 Integration example

As with all tracker implementations it is important to identify a tracking loop. Below is a very simple example of how a
typical tracking loop looks in Matlab/Octave with all the tracker specific code removed and placed in self-explanatory
functions.

34 Chapter 5. Matlab/Octave wrappers

24

25

26

27

20

21

22

23

24

25

26

TraX Documentation, Release 1.0

% Initialize the tracker

region = read_bounding_box ('init.txt'");
image = imread('0001.jpg");

region = initialize_tracker (region, image);
result = {region};

i = 2;

while true
% End-of-sequence criteria

if ~exist (sprintf ('%04d.jpg', i), 'file')
break;

end;

i =1+ 1;

% Read the next image.

image = imread(sprintf ('%04d.Jjpg', 1));
% Run the update step

region = update_tracker (image);

% Save the region
result{end+1} = region;

end

% Save the result
save_trajectory (result);

To enable tracker to receive the images over the protocol you have to change a few lines. First, you have to initialize
the protocol at the begining of the script and tell what kind of image and region formats the tracker supports. Then the

initialization of a tracker has to be placed into a loop because the protocol

Initialize the protocol

traxserver ('setup', 'rectangle', 'path'");
while true
% Wait for data
[image, region] = traxserver ('wait');
% Stopping criteria
if isempty (image)

break;
end;

% We are reading a given path
mat_image = imread(image);
if ~isempty(region)

% Initialize tracker

region = initialize_tracker (region, mat_image);

else

region = update_tracker (mat_image);
end

% Report back result to advance to next frame
traxserver ('status', region);

end

5.3. Integration example

35

27

29

TraX Documentation, Release 1.0

$ Quit session if that was not done already
traxserver ('quit');
36 Chapter 5. Matlab/Octave wrappers

CHAPTER 6

Support modules

Besides protocol implementation the repository also contains supporting libraries that help with some frequently
needed functionalities.

6.1 Client utilities

The client support library provides a C++ client class that uses C++ protocol API to communicate with the tracker
process, besides communication the class also takes care of launching tracker process, handling timeouts, logging, and
other things. The class also supports setting up communication over streams as well as over TCP sockets. To compile
the module you have to enable BUILD_CLIENT flag in CMake build system.

6.1.1 CLI interface

Client support module also provides a simple CLI (command line interface) to the client that can be used for simple
tracker execution and protocol testing. If the OpenCV support module (below) is also compiled then the CLI interface
uses it for some extra conversions that are otherwise not supported (e.g. loading images and sending them in their raw
form over the communication channel if the server requests it).

6.2 OpenCV conversions

OpenCV is one of most frequently used C++ libraries in computer vision. This support library provides conversion
functions so that protocol image and region objects can be quickly converted to corresponding OpenCV objects and
vice-versa.

The module is automatically built if the OpenCV library is found on the system, additionally you can also enable it by
turning on the BUILD_OPENCYV flag in CMake build system (but you may have to set the OpenCV location manually
in this case).

cv::Mat image_to_mat (const /mage &image)
Converts a protocol image object to an OpenCV matrix that represents the image.

Parameters image — Protocol image object
Returns OpenCV matrix object

cv::Rect region_to_rect (const Region ®ion)
Converts a protocol region object to an OpenCV rectangle structure.

Parameters image — Protocol region object

37

http://opencv.org/

TraX Documentation, Release 1.0

Returns OpenCV rectangle structure

std::vector<cv::Point2f> region_to_points (const Region ®ion)
Converts a protocol region object to a list of OpenCV points.

Parameters image — Protocol region object
Returns List of points

Image mat_to_image (const cv::Mat &mat)
Converts an OpenCV matrix to a new protocol image object.

Parameters mat — OpenCV image
Returns Protocol image object

Region rect_to_region (const cv::Rect rect)
Converts an OpenCV rectangle structure to a protocol region object of type rectangle.

Parameters rect — Rectangle structure
Returns Protocol region object

Region points_to_region (const std::vector<cv::Point2f> points)
Converts a list of OpenCYV points to a protocol region object of type polygon.

Parameters rect — List of points
Returns Protocol region object

void draw_region (cv::Mat &canvas, const Region ®ion, cv::Scalar color, int width = 1)
Draws a given region to an OpenCV image with a given color and line width.

Parameters
* canvas — Target OpenCV image to which the region is drawn
* region — Protocol region object
* color — Color of the line as a an OpenCV scalar structure

¢ width — Width of the line

38 Chapter 6. Support modules

CHAPTER 7

Contributions and development

Contributions to the TraX protocol and library are welcome, the preferred way to do it is by submitting issues or pull
requests on GitHub.

39

https://github.com/votchallenge/trax

TraX Documentation, Release 1.0

40 Chapter 7. Contributions and development

CHAPTER 8

Protocol adoption

On this site we list public projects that have adopted the TraX protocol (either using the reference library or custom
implementations). If you want to be on the list please write an email to the developers.

8.1 Trackers

e LGT and ANT: The repository contains Matlab implementations of LGT (TPAMI 2013), ANT (WACYV 2016),
IVT (IJCV 2007), MEEM (ECCV 2014), and L1-APG (CVPR 2012) trackers.

* KCF: A C++ re-implementation of the KCF (TPAMI 2015) tracker.
¢ ASMS: A C++ implementation of the ASMS (PRL 2014) tracker.
e MIL: An adapted original C++ implementation of the MIL (CVPR 2009) that works with OpenCV 2.

 Struck: A fork of the original Struck (ICCV 2011) implementation with protocol support and support OpenCV
2.

e CMT: A fork of the original CMT (CVPR 2015) implementation.

8.2 Applications

* VOT toolkit: the toolkit uses the TraX protocol as the default integration mechanism.

41

https://github.com/lukacu/visual-tracking-matlab
https://github.com/vojirt/kcf
https://github.com/vojirt/asms
https://github.com/lukacu/mil
https://github.com/lukacu/struck
https://github.com/lukacu/CMT
https://github.com/votchallenge/vot-toolkit

TraX Documentation, Release 1.0

42 Chapter 8. Protocol adoption

Python Module Index

t

trax, 29
trax.image, 30
trax.region, 30
trax.server, 29

43

TraX Documentation, Release 1.0

44 Python Module Index

Index

B

BUFFER (in module trax.image), 30
BufferImage (class in trax.image), 30

C

convert() (in module trax.region), 31

F

FileImage (class in trax.image), 30

Image (class in trax.image), 30

M

MEMORY (in module trax.image), 30
Memorylmage (class in trax.image), 30
MessageType (class in trax), 29

P

parse() (in module trax.image), 30
PATH (in module trax.image), 30
Polygon (class in trax.region), 30
POLYGON (in module trax.region), 30

Q

quit() (trax.server.Server method), 29

R

Rectangle (class in trax.region), 31
RECTANGLE (in module trax.region), 30
Region (class in trax.region), 31

Request (class in trax.server), 29

S

Server (class in trax.server), 29
ServerOptions (class in trax.server), 30
Special (class in trax.region), 31
SPECIAL (in module trax.region), 31
status() (trax.server.Server method), 29

T

trax (module), 29

trax.image (module), 30
trax.region (module), 30
trax.server (module), 29

trax:
trax:
trax:
trax:
trax:
trax:
trax:
trax:
trax:
trax:
trax:
trax:
trax:
trax:
trax:
trax:
trax:
trax:
trax:
trax:
trax:
trax:
trax:
trax:
trax:
trax:
trax:
trax:
trax:
trax:
trax:
trax:
trax:
trax:
trax:

:Bounds (C++ class), 23

:Bounds::~Bounds (C++ function), 23
:Bounds::Bounds (C++ function), 23

:Client (C++ class), 23

:Client::~Client (C++ function), 24
:Client::Client (C++ function), 24
:Client::configuration (C++ function), 24
:Client::frame (C++ function), 24
:Client::initialize (C++ function), 24
:Client::wait (C++ function), 24

:Configuration (C++ class), 23
:Configuration::~Configuration (C++ function), 23
:Configuration::Configuration (C++ function), 23
:draw_region (C++ function), 38

:Image (C++ class), 24

:Image::~Image (C++ function), 24
:Image::create_buffer (C++ function), 24
:Image::create_memory (C++ function), 24
:Image::create_path (C++ function), 24
:Image::create_url (C++ function), 24
:Image::empty (C++ function), 24
:Image::get_buffer (C++ function), 25
:Image::get_memory_header (C++ function), 25
:Image::get_memory_row (C++ function), 25
:Image::get_path (C++ function), 24
:Image::get_url (C++ function), 25
:Image::Image (C++ function), 24

:Image::type (C++ function), 24
:Image::write_memory_row (C++ function), 25
:image_to_mat (C++ function), 37

:Logging (C++ class), 23

:Logging::~Logging (C++ function), 23
:Logging::Logging (C++ function), 23
:mat_to_image (C++ function), 38
:points_to_region (C++ function), 38

45

TraX Documentation, Release 1.0

trax::Properties (C++ class), 26
trax::Properties::~Properties (C++ function), 26
trax::Properties::clear (C++ function), 26
trax::Properties::enumerate (C++ function), 26
trax::Properties::from_map (C++ function), 26
trax::Properties::get (C++ function), 26
trax::Properties::Properties (C++ function), 26
trax::Properties::set (C++ function), 26
trax::Properties::to_map (C++ function), 26
trax::rect_to_region (C++ function), 38
trax::Region (C++ class), 25
trax::Region::~Region (C++ function), 25
trax::Region::bounds (C++ function), 26
trax::Region::convert (C++ function), 26
trax::Region::create_polygon (C++ function), 25
trax::Region::create_rectangle (C++ function), 25
trax::Region::create_special (C++ function), 25
trax::Region::empty (C++ function), 25
trax::Region::get (C++ function), 25

trax::Region::get_polygon_count (C++ function), 26
trax::Region::get_polygon_point (C++ function), 25

trax::Region::overlap (C++ function), 26
trax::Region::Region (C++ function), 25
trax::Region::set (C++ function), 25

trax::Region::set_polygon_point (C++ function), 25

trax::Region::type (C++ function), 25
trax::region_to_points (C++ function), 38
trax::region_to_rect (C++ function), 37
trax::Server (C++ class), 24
trax::Server::~Server (C++ function), 24
trax::Server::configuration (C++ function), 24
trax::Server::reply (C++ function), 24
trax::Server::Server (C++ function), 24
trax::Server::wait (C++ function), 24
trax_bounds (C type), 10

trax_cleanup (C function), 12
trax_client_frame (C function), 11
trax_client_initialize (C function), 11
trax_client_setup_file (C function), 10
trax_client_setup_socket (C function), 10
trax_client_wait (C function), 11
TRAX_ERROR (C macro), 9
TRAX_FRAME (C macro), 9
trax_get_parameter (C function), 12
trax_handle (C type), 10

TRAX_HELLO (C macro), 9

trax_image (C type), 10
TRAX_IMAGE_BUFFER (C macro), 13

TRAX_IMAGE_BUFFER_ILLEGAL (C macro), 13

TRAX_IMAGE_BUFFER_JPEG (C macro), 13
TRAX_IMAGE_BUFFER_PNG (C macro), 13
trax_image_create_buffer (C function), 14
trax_image_create_memory (C function), 13
trax_image_create_path (C function), 13

trax_image_create_url (C function), 13
TRAX_IMAGE_EMPTY (C macro), 13
trax_image_get_buffer (C function), 15
trax_image_get_memory_header (C function), 14
trax_image_get_memory_row (C function), 15
trax_image_get_path (C function), 14
trax_image_get_type (C function), 14
trax_image_get_url (C function), 14
TRAX_IMAGE_MEMORY (C macro), 13

TRAX_IMAGE_MEMORY_GRAY 16 (C macro), 13
TRAX_IMAGE_MEMORY_GRAY8 (C macro), 13
TRAX_IMAGE_MEMORY_ILLEGAL (C macro), 13

TRAX_IMAGE_MEMORY_RGB (C macro), 13
TRAX_IMAGE_PATH (C macro), 13
trax_image_release (C function), 13
TRAX_IMAGE_URL (C macro), 13
trax_image_write_memory_row (C function), 14
TRAX_INITIALIZE (C macro), 9
trax_logger_setup (C function), 10
trax_logger_setup_file (C function), 10
trax_logging (C type), 9

trax_no_bounds (C variable), 10

trax_no_log (C variable), 10

TRAX_OK (C macro), 9

trax_properties (C type), 10
trax_properties_clear (C function), 19
trax_properties_create (C function), 18
trax_properties_enumerate (C function), 20
trax_properties_get (C function), 19
trax_properties_get_float (C function), 20
trax_properties_get_int (C function), 19
trax_properties_release (C function), 18
trax_properties_set (C function), 19
trax_properties_set_float (C function), 19
trax_properties_set_int (C function), 19
TRAX_QUIT (C macro), 9

trax_region (C type), 10
TRAX_REGION_ANY (C macro), 15
trax_region_bounds (C function), 17
trax_region_clone (C function), 17
trax_region_contains (C function), 18
trax_region_convert (C function), 18
trax_region_create_polygon (C function), 17
trax_region_create_rectangle (C function), 16
trax_region_create_special (C function), 16
trax_region_decode (C function), 18
TRAX_REGION_EMPTY (C macro), 15
trax_region_encode (C function), 18
trax_region_get_polygon_count (C function), 17
trax_region_get_polygon_point (C function), 17
trax_region_get_rectangle (C function), 16
trax_region_get_special (C function), 16
trax_region_get_type (C function), 15
trax_region_overlap (C function), 18

46

Index

TraX Documentation, Release 1.0

TRAX_REGION_POLYGON (C macro), 15
TRAX_REGION_RECTANGLE (C macro), 15
trax_region_release (C function), 15
trax_region_set_polygon_point (C function), 17
trax_region_set_rectangle (C function), 16
trax_region_set_special (C function), 16
TRAX_REGION_SPECIAL (C macro), 15
trax_server_reply (C function), 12
trax_server_setup (C function), 11
trax_server_setup_file (C function), 12
trax_server_wait (C function), 12
trax_set_parameter (C function), 12
TRAX_STATE (C macro), 9

trax_version (C function), 10

TraXError, 29

U

URL (in module trax.image), 30
URLImage (class in trax.image), 30

W

wait() (trax.server.Server method), 29

Index

47

	TraX protocol specification
	Definitions
	Message format
	Protocol messages and states
	Region formats
	Image formats

	Reference C library
	Requirements and building
	Documentation
	Integration example

	Library C++ wrapper
	Requirements and building
	Documentation
	Integration example

	Python implementation
	Requirements and support
	Documentation
	Integration example

	Matlab/Octave wrappers
	Requirements and building
	Documentation
	Integration example

	Support modules
	Client utilities
	OpenCV conversions

	Contributions and development
	Protocol adoption
	Trackers
	Applications

	Python Module Index

